Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 379: 110508, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150498

RESUMO

Tattooing is a very common fashion trend across all the ages and gender of the society worldwide. Although skin inflammatory diseases are very frequent among tattoo users because of the active chemical ingredients used in tattoo ink, yet no ingredient-specific toxicity study has been performed. Benzo(ghi)perylene (BgP) is one of the PAHs and an important ingredient of black tattoo ink that shows strong absorption in UVA and UVB radiation of sunlight. Therefore, understanding the hazardous potential of BgP especially under UVA exposure is important for the safety of skin of tattoo users by considering the fact that penetration of UVA is in the dermis region where tattoo ingredients reside. To evaluate the hazardous potential of BgP on human skin under UVA exposure, different experimental tools i.e., in-chemico, in-silico and in-vitro were utilized. Our results illustrated that BgP photosensitized under UVA (1.5 mW/cm2) irradiation shows a degradation pattern till 4 h exposure. Photosensitized BgP reduced significant cell viability (%) at 1 µg/ml concentration. However, the pretreatment of singlet and hydroxyl radical quenchers, restoration of cell viability observed, confirmed the role of type-I and type-II photodynamic reactions in phototoxicity of BgP. Further, intracellular uptake of BgP in HaCaT cells was estimated and confirmed by UHPLC analysis. Molecular docking of BgP with DNA and formation of γ-H2AX foci demonstrated the DNA intercalation and double-stranded DNA damaging potential of BgP. Furthermore, acridine orange and ethidium bromide (AO/EB) dual staining showed apoptotic cell death via photosensitized BgP under UVA irradiation. The above findings suggest that BgP reached the human skin cell and induced dermal toxicity via direct and indirect mode of DNA damage under UVA exposure finally promoting the skin cell death. Thus, BgP-containing tattoo ink may be hazardous and may induce skin damage and diseases, especially in presence of UVA radiation of sunlight. To minimize the risk of skin diseases from synthetic ingredients in tattoo ink, the study highlights the importance of developing eco-friendly and skin-friendly tattoo ingredients by companies.


Assuntos
Tatuagem , Humanos , Tatuagem/efeitos adversos , Simulação de Acoplamento Molecular , Raios Ultravioleta/efeitos adversos , Pele/metabolismo , Dano ao DNA , DNA/metabolismo
2.
J Photochem Photobiol B ; 244: 112700, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37229973

RESUMO

Tattooing on different parts of the body is a very common fashion trend in all sections of society globally. Skin allergies and other related skin diseases are very common among tattoo users. Benzo[ghi]perylene (BP) is a PAH and an important component of tattoo ink that showed prominent absorption under ultraviolet radiation (UVR) region. Therefore, to provide safety to the skin, a thorough safety study of BP exposed under UVR and Sunlight is very essential to understand their hazardous impact on the skin. BP showed a strong absorption of UVA and UVB radiation of sunlight. It is photolabile and degraded under UVA, UVB, and Sunlight in progressing order of time (1-4 h) without generating any novel photoproducts. Further, BP showed a specific generation of O2.- and OH radicals via activation of type I photodynamic reaction under exposure to UVA, UVB and Sunlight. Photocytotoxicity results illustrated concentration-dependent cell viability reduction in all exposure conditions of UVA, UVB, and Sunlight, respectively. Fluorescent probes (2',7'-dichlorofluorescein diacetate and dihydroethidium) for intracellular reactive oxygen species (ROS) generation supported the involvement of ROS in the phototoxicity of BP in the HaCaT cell line. Hoechst staining showed significant genomic insult induced by BP under UVA and UVB. Photoexcited BP promoted cell cycle arrest in the G1 phase and induced apoptosis confirmed via acridine orange/ethidium bromide staining. The findings of gene expression also supported apoptotic cell death in photoexcited BP via an increase in the level of pro-apoptotic gene (Bax) and a decrease in the level of anti-apoptotic gene (Bcl-2). The aforementioned finding indicates that tattoo users should avoid using BP since it can cause skin damage/diseases if they are exposed to UVR or Sunlight while tattooing on the body.


Assuntos
Dermatite Fototóxica , Tatuagem , Humanos , Raios Ultravioleta , Luz Solar , Espécies Reativas de Oxigênio/metabolismo , Tinta , Linhagem Celular , Queratinócitos/metabolismo , Dermatite Fototóxica/metabolismo , Dano ao DNA
3.
Food Chem Toxicol ; 164: 112990, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35398180

RESUMO

2,4,5,6-Tetraaminopyrimidine sulfate (TAPS) is worldwide the most commonly used developer in hair dyes. As skin is the major organ, which is directly exposed to these permanent hair dyes, a comprehensive dermal safety assessment is needed. Hereto, we studied the photosensitization potential and mechanism involved in dermal phototoxicity of TAPS exposed to the dark and UVA/UVB/Sunlight by using different in-chemico and mammalian (HaCaT) cells, as test systems. Our experimental outcomes illustrate that TAPS get photodegraded (LC-MS/MS) and specifically generated superoxide anion radical (O2•-) under UVA and UVB via type-I photodynamic reaction. The phototoxic potential of TAPS is measured through MTT, NRU, and LDH assays that depicted a significant cell viability reduction at 25 µg/ml concentration and higher. Different cellular stainings (PI uptake, AO/EB, JC-1, NR uptake) suggested the role of mitochondrial-mediated apoptosis. Further, the transcriptomics study revealed upregulation of Apaf-1, Bax, Cytochrome c, Caspase 3, Caspase 9 and downregulation of Catalase and Bcl-2 by TAPS treated cells that strengthen our findings. Thus, the above findings suggest that chronic application of TAPS may be hazardous for human skin and promote various skin diseases.


Assuntos
Dermatite Fototóxica , Tinturas para Cabelo , Apoptose , Cromatografia Líquida , Dano ao DNA , Dermatite Fototóxica/metabolismo , Humanos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sulfatos , Superóxidos/metabolismo , Espectrometria de Massas em Tandem , Raios Ultravioleta
4.
Photochem Photobiol ; 98(5): 1050-1058, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35038766

RESUMO

2-Acetonaphthone (2-ACN) is a synthetic fragrance material used in various cosmetics as an adulterant. Due to its frequent use, we have conducted an in-depth study to understand the photosensitizing potential of 2-ACN. Results of this study illustrate that 2-ACN showed photodegradation in 4 h under ambient UV radiation (UVR) and sunlight exposure. It generated (1-25 µg mL-1 ) superoxide anion radical (O2 ·- ) and singlet oxygen (1 O2 ) in the presence of UVR/sunlight through in chemico and in vitro test systems. 2-ACN (10 µg mL-1 ) showed a 43.9% and 57.4% reduction in cell viability under UVA and sunlight, respectively. Photosensitized 2-ACN generated intracellular reactive oxygen species (ROS) (6-folds in UVA and 8-folds in sunlight), which compromises the endoplasmic reticulum and mitochondrial membrane potential leading to cell death. Acridine orange/ethidium bromide dual staining and annexin-V/PI uptake showed cell death caused via 2-ACN under UVR exposure. The above findings signify the role of ROS via Type-I and Type-II photodynamic pathways in photosensitization of 2-ACN that ultimately promotes photodamage of important cellular organelles leading to cell death. The study advocates that solar radiation should be avoided by the users after the application of cosmetic products containing 2-ACN.


Assuntos
Oxigênio Singlete , Superóxidos , Laranja de Acridina , Anexinas , Etídio , Odorantes , Espécies Reativas de Oxigênio/metabolismo , Oxigênio Singlete/metabolismo , Superóxidos/metabolismo , Raios Ultravioleta
5.
Toxicol In Vitro ; 80: 105322, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35085765

RESUMO

Fragrances are used in almost every cosmetic product. International Fragrance Association (IFRA) is the regulatory body that controls the use of fragrances in cosmetic products. Methyl-N-methylanthranilate (DMA) is a naturally derived fragrance, commonly used in cosmetic products such as fine perfumes, skin care products, etc. But there is a lack of detailed study in terms of its phototoxic and photogenotoxicity mechanisms under UVA/sunlight exposure. In this study, we have shown that DMA photodegrades in 4 h under UVA (1.5 mW/cm2) and sunlight. DMA (0.0001%-0.0025%) significantly reduced the cell viability as demonstrated by NRU and MTT assays in a dose-dependent manner under UVA (5.4 J/cm2) and sunlight (1 h) exposure in the HaCaT cell line. It generated excessive intracellular ROS (superoxide anion radical via type-I photodynamic reaction), resulting in lysosomal destabilization and mitochondrial membrane depolarization. Photo-activated DMA caused DNA fragmentation as observed by olive tail moment. DNA double-strand breaks was demonstrated by phosphorylation of H2AX-histone protein and formation of photo-micronuclei in skin keratinocytes. Additionally, photo-activated DMA upregulated the oxidative stress marker gene hemeoxygenase-1 and apoptotic marker genes (cytochrome-C, caspase-3, caspase-9). Activated caspase-cascade pathway established that photo-activated DMA can potentially trigger apoptosis in the human skin cells.


Assuntos
Queratinócitos/efeitos dos fármacos , Perfumes/efeitos da radiação , Perfumes/toxicidade , Luz Solar , Raios Ultravioleta , ortoaminobenzoatos/efeitos da radiação , ortoaminobenzoatos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular , Permeabilidade da Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Queratinócitos/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fotólise , Espécies Reativas de Oxigênio/metabolismo
6.
Toxicol Appl Pharmacol ; 420: 115516, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33798594

RESUMO

Nabumetone (NB) is a non-steroidal anti-inflammatory drug (NSAID), prescribed for managing pain associated with acute/chronic rheumatoid arthritis, osteoarthritis and other musculoskeletal disorders. Though some incidences of photosensitivity have been reported, there is limited information available on its phototoxicity potential. In this study, NB photodegraded in a time-dependant manner (0-4 h) under UVA (1.5 mW/cm2), UVB (0.6 mW/cm2) and natural sunlight as observed through UV-vis spectrophotometer and the results were further confirmed with Ultra High-Performance Liquid Chromatography (UHPLC). Photosensitized NB generated reactive oxygen species (ROS) as observed by lipid peroxidation, suggesting oxidative degradation of lipids in cell membrane, thereby resulting in cell damage. MTT and NRU (neutral red uptake) assays revealed that NB induced phototoxicity in concentration-dependent manner (0.5, 1, 5, 10 µg/ml) under UVA, UVB and sunlight exposure (30 min) in human keratinocytes cell line (HaCaT), with significant phototoxicity at the concentration of 5 µg/ml. Photosensitized NB generated intracellular ROS, disrupted mitochondrial and lysosomal membrane integrity, resulting in cell death. UV-induced genotoxicity by NB was confirmed through micronuclei generation, γ-H2AX induction and cyclobutane pyrimidine dimer formation. This is the first study which showed the phototoxicity and photogenotoxicity potential of NB in HaCaT cell line. We also observed that photosensitized NB upregulated inflammatory markers, such as COX-2 and TNFα. This study proposes that sunlight exposure should be avoided by patients using nabumetone and proper guidance should be provided by clinicians regarding photosensitivity of drugs for better safety and efficacy.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Dano ao DNA , Queratinócitos/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Nabumetona/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta , Anti-Inflamatórios não Esteroides/efeitos da radiação , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Estabilidade de Medicamentos , Células HaCaT , Histonas/metabolismo , Humanos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Nabumetona/efeitos da radiação , Fotólise , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
9.
J Cell Biochem ; 121(2): 1273-1282, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31709634

RESUMO

Prolonged exposure of the earth's surface to the sun's ultraviolet radiation may result in various skin diseases and cataract. Carbazole (CBZ), as a polycyclic-aromatic hydrocarbon (PAH), is blended with a five-member nitrogen-containing ring. It is found in cigarette smoke, coal, eye kohl, tattoo ink, and wood combustion and affects various types of flora and fauna. Our findings suggest that CBZ generates reactive oxygen species (ROS) like O2•- through type-I photodynamic reaction and causes phototoxicity in the human keratinocyte cell line (HaCaT), which has been proved by mitochondrial dehydrogenase and neutral red uptake assays. CBZ induces single strand DNA damage. We have investigated the involvement of the apoptotic pattern of cell death and confirmed it by cytochrome C release from mitochondria and caspase-9 activation. Similarly, photo-micronuclei formation was associated to CBZ-induced phototoxicity. The results of this study strongly support that the upregulation of bax, cyto-C, apaf-1, casp-9 and down regulation of bcl2, keap-1, nrf-2, and hmox-1 genes cause apoptopic cell death. Downregulation of antioxidant genes showed a significant amount of ROS generation by photosensitized CBZ. Therefore, the current study will be a step forward to safeguard human beings from sunlight-induced photosensitive CBZ prolonged exposure.


Assuntos
Carbazóis/farmacologia , Regulação da Expressão Gênica , Queratinócitos/patologia , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Pele/patologia , Raios Ultravioleta , Apoptose , Células Cultivadas , Citocromos c/metabolismo , Dano ao DNA , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio , Pele/efeitos dos fármacos , Pele/efeitos da radiação
13.
Ecotoxicol Environ Saf ; 174: 270-282, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844667

RESUMO

Triclosan (TCS) is an antimicrobial preservative used in personal care products. Here, we have studied the phototoxicity, photogenotoxicity of TCS and its molecular mechanism involving p38 mitogen activated protein kinase (MAPK) pathway under UVB/sunlight exposure. We found that TCS showed photodegradation and photoproducts formation under UVB/sunlight. In silico study suggests that photosensitized TCS loses its preservative property due to the formation of its photoproducts. Photosensitized TCS induces significant O2•-, •OH generation and lipid peroxidation via type-I photochemical reaction mechanism under UVB/sunlight exposure. We performed intracellular study of TCS on human skin keratinocytes (HaCaT cell-line) under the ambient intensity of UVB (0.6 mW/cm2) and sunlight exposure. Significant intracellular ROS generation was observed through DCFH2-DA/DHE assays along with a significant reduction in cell viability through MTT and NRU assays in photosensitized TCS. Photosensitized TCS also induces endoplasmic reticulum (ER) stress as shown through ER-tracker/DAPI staining and Ca2+ release. It further induced cell cycle arrest through the sub-G1 phase augmentation and caused lysosomal/mitochondrial destabilization. Photogenotoxicity was shown through significant tail DNA, micronuclei and cyclobutane pyrimidine dimers (CPDs) formations. Cell signaling mechanism implicated upregulated expression of cleaved Caspase-3, Bax, phospho-p38, phospho-JNK and cytochrome C, thereby downregulated Bcl-2 expressions. Results advocate that TCS induces phototoxic effects via type I mediated photodynamic mechanism and activation of MAPK pathway. We conclude that photoexcited TCS may be deleterious to human health at the ambient environmental intensities of sunlight reaching at the earth's surface. Therefore, it may be replaced by alternative safe preservative.


Assuntos
Dano ao DNA , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Luz Solar , Triclosan/toxicidade , Raios Ultravioleta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , Fotólise , Transdução de Sinais , Triclosan/efeitos da radiação
18.
Neurochem Int ; 120: 87-98, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30055195

RESUMO

Elevated homocysteine (Hcy) levels have been implicated in neurodevelopmental and neurodegenerative disorders. Induction of oxidative stress and apoptosis has been reported as major mechanism in Hcy-induced neurotoxicity. Hydrogen sulfide (H2S), as an antioxidant molecule has been reported to exhibit novel protective effect against Hcy-induced cell damage. However, the mechanisms involved in protective effect of H2S against Hcy-induced toxicity in neurons have not been fully elucidated. Herein, effect of sodium hydrogen sulfide (NaHS, a source of H2S) on Hcy-induced neurotoxicity was studied on Neuro-2a (N2a) cells in vitro and in animals subjected to hyperhomocysteinemia. DCFH-DA staining revealed that NaHS effectively attenuated Hcy-induced oxidative damage by reducing intracellular reactive oxygen species (ROS) generation. JC-1 staining and western blot results showed that NaHS pre-treatment prevented Hcy-induced mitochondrial dysfunctions and mitochondria-mediated apoptosis. MTT assay, cell cycle analysis, ethidium bromide/acridine orange (EB/AO) and Hoechst staining results demonstrated that NaHS significantly alleviated Hcy-induced cytotoxicity in N2a cells by preventing oxidative damage. Importantly, the results from agarose gel electrophoresis, comet and TUNEL assay indicated that NaHS also prevented neurodegeneration by reducing DNA damage and apoptotic cell death in animals with hyperhomocysteinemia. Taken together, the results demonstrate that the protective potential of H2S against Hcy-induced neurotoxicity is mediated by preventing oxidative DNA damage and mitochondrial dysfunctions. The findings validate that H2S is a promising therapeutic molecule in neurodegenerative conditions associated with hyperhomocysteinemia.


Assuntos
Encéfalo/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Homocisteína/farmacologia , Masculino , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Síndromes Neurotóxicas/tratamento farmacológico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
20.
Regul Toxicol Pharmacol ; 95: 298-306, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29626563

RESUMO

Benzophenone-2 (BP2), a common ingredient of sunscreens formulation is widely used as UV filter. We have assessed the photogenotoxic and photocytotoxic potential of BP2. Photostability test showed that BP2 is unstable under UV exposure. Cell proliferation assay revealed that viability of HaCaT cells significantly reduced under UVA, UVB and sunlight exposure. DCF fluorescence intensity proved intracellular ROS generation capacity of BP2 under sunlight, UVA and UVB irradiation. Photodynamic degradation of guanine base of DNA is promoted by BP2 under UV treatment. Genotoxicity assessed by comet assay, showed that photosensitized BP2 enhanced DNA damage, which is measured in term of % tail DNA and olive tail moment. Genotoxic potential of BP2 was further validated with photomicronuclei assay. Photogenotoxicity of BP2 was lastly confirmed by formation of CPDs (Cyclo butane pyrimidine dimmers). DNA damage induced by BP2 was irreversible and extended incubation periods (6-12 h) not favored the recovery from damaged DNA. JC 1 staining showed significant reduction in mitochondrial membrane potential. Membrane integrity compromisation of HaCaT cells was established by AO (Acridine orange), EtBr (Ethidium bromide) staining and confirmed with sub G1 population of cell cycle. Thus, results suggest that BP2 should be avoided in topical application for safe sunscreen practices.


Assuntos
Benzofenonas/toxicidade , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ensaio Cometa , Dano ao DNA , Humanos , Queratinócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA